Jozef Rusnák, Karel Máslo, Petr Trubač

Modelovanie veternej elektrárne na báze DFIG v programoch MODES a EUROSTAG

Príspevok prezentuje výsledky výpočtov realizované dvoma simulačnými nástrojmi MODES a EUROSTAG uskutočnené na jednoduchom modely sústavy obsahujúcom veterné elektrárne s dvojito napájaným asynchrónnym generátorom.

Kľúčové slová: veterná elektráreň, MODES, EUROSTAG

I. ÚVOD

Veterné elektrárne (VtE) patria medzi obnoviteľné zdroje energie a ich inštalovaný výkon narastá vo svete a zvlášť v Európe. Ich popisom sa zaoberal celý rad predchádzajúcich publikácií (viď napr. [1] - [8]).

Vzhľadom k špecifickým vlastnostiam VtE kladú na ne sieťové kódexy (stanovujúce podmienky pripojovania a prevádzkovania – viď napr. [9], [10] určité požiadavky, týkajúce sa napr. správania VtE pri poruchách v sieti. Jednou z možností preukázať plnenie požiadaviek sieťových kódexov je simulačný výpočet na verifikovanom dynamickom modeli, ktorý vierohodne reprodukuje odozvy VtE na vonkajšie zmeny napätia, frekvencie a rýchlosti vetra..

Také dynamické modely sú potrebné aj pre výpočty dynamickej stability a slúžia aj k pochopeniu základných princípov fungovania a dynamického správania VtE.

Taktiež podľa požiadaviek UCTE stanovených v Prevádzkových príručkách (tzv. "Operational Handbooks" – viď [11]) musí každý prevádzkovateľ prenosovej sústavy implementovať počítačové modely pre výpočty stability.

Tento príspevok ukazuje a porovnáva výsledky výpočtov realizované dvoma sieťovými simulátormi MODES a EUROSTAG. Výpočty boli uskutočnené na jednoduchej sústave, ktorej dynamické správanie je možné ľahko interpretovať.

II. MODEL SÚSTAVY

Jednopólová schéma modelovanej sústavy je na obrázku 1. Vybrané dáta modelu (spoločné pre obidva simulátory) sú opísané v nasledujúcich tabuľkách.

TADIUVIA 1

Hodnoty záťaží v uzloch NHV1 a NHV3			
	NHV1	NHV3	
P [MW]	200	20	
Q [MVAr]	60	6	

		-
	TABUĽKA 2	
	THE CERT 2	
P	arametre vedení (Uv=110 kV, 3	Sv=100 MVA)

Vedenia medzi uzlami	NHV1-NHV2-1 NHV1-NHV2-2 NHV2-NHV3	NHV2-NLOAD1 NHV2-NLOAD2
Тур	185AlFe6	185AlFe6
Dĺžka vedenia [km]	20	10
Celkový odpor vedenia [p.u.]	0,025785	0,01289
Celková reaktancia vedenia [p.u.]	0,06711	0,03355

TABUĽKA 3 Parametre trojvinuťových transformátorov T201, TFO_WT1, TFO_WT2

	T201	TFO_WT1	TFO_WT2
Miesto pripojenia vinutí (prim./sek./terc.)	NHV0/NHV1/NH VT	NLOAD1/NST 1/NRT1	NLOAD2/NST 2/NRT2
Menovité výkony vinutí [MVA]	250/250/100	25/25/6	
Menovité napätia [kV]	400/121/10,5	110/0,69/0,69	
Straty naprázdno [%]	0,145	0	
Magnetizačný prúd [%]	0,21	0	
Straty nakrátko ΔP_{k12} [%]	0,24	0,6	
Straty nakrátko ΔP_{k13} [%]	0,1	0,6	
Straty nakrátko ΔP_{k23} [%]	0,25	0,6	
napätie nakrátko u _{k12} [%]	13,2	11,985	
napätie nakrátko u _{k13} [%]	37,3	11,985	
napätie nakrátko u _{k23} [%]	22?4	11,985	

TABUĽKA 4 Parametre transformátora T401

Odpor [p.u.]	0,000185
Reaktancia [p.u.]	0,00769
Menovitý výkon transformátora [MVA]	250
Prevod	15,75 kV/400 kV

TABUĽKA 5

Parametre veterných generátorov a budičov VTE			
Menovitý zdanlivý výkon jedného veterného parku [MVA]	20		
Menovité napätie jedného generátora [V]	690		
Konštanta zotrvačnosti [MWs./MVA]	3,527		
Synchrónne otáčky rotora [p.u.]	0,9		
Minimálne otáčky rotora [p.u.]	0,56		
Maximálne otáčky rotora [p.u.]	1,122		
Menovitý zdanlivý výkon budiča [MVA]	6		

Obr. 1 Jednopólová schéma modelovanej sústavy.

III. MODEL DFIG V PROGRAME MODES

Prechodné deje v oboch vinutiach asynchrónneho stroja sa v bežnej prevádzke neuvažujú, pretože sú omnoho rýchlejšie v porovnaní s vyšetrovanými elektromechanickými dejmi. Dominantnú rolu preberá frekvenčný menič, ktorý je v súčinnosti s regulačnými obvodmi schopný prispôsobovať činný aj jalový výkon požiadavkám na efektívne využitie kinetickej energie (rýchlosti) vetra a na minimalizáciu spätných vplyvov stroja na sieť. V bežnej prevádzke s napätím väčším ako je 70 % menovitej hodnoty je dodávka činného aj jalového výkonu daná výstupmi z regulátorov P a Q:

Regulácia spočíva v dvoch oddelených a nezávislých častiach pre činný a jalový výkon P a Q. Cieľom regulácie P je prispôsobovať činný výkon dodávaný do siete, aby zodpovedal výkonovej rovnováhe sústrojenstva, teda predovšetkým výkonu vyrábanému veternou turbínou v závislosti na rýchlosti vetra. V modeli sa predpokladá spolupráca s veternou turbínou s premennými otáčkami WIND, takže zadaná hodnota otáčok sa určuje v závislosti na skutočnej dodávke výkonu do siete P_G . V prípade výkonovej nerovnováhy (rozdiele medzi výkonom turbíny N_T a výkonom generátora P_G) a vzniku regulačnej odchýlky ϵ_P je požadovaný výkon menený trendom v_N , aby sa dostal do súladu s výkonom turbíny N_T . Naopak pri poklese dodávky do siete P_G (napr. vplyvom skratu) sa zmenšujú zadané otáčky ω_Z (vstupujúce aj do modelu turbíny), čím sa zmenšuje akcelerácia sústrojenstva.

Regulácia Q môže obdobne ako u synchrónneho generátora pracovať v primárnej alebo sekundárnej regulácii v závislosti na hodnote parametru T_{IQ} . Ak je nulový, regulátor reguluje svorkové napätie, prípadne modifikované statikami jalovým a/nebo činným výkonom (voľbou parametrov k_{IR} a k_{IA}).

Pre T_{IQ}>0 reguluje regulátor jalový výkon generátora. V oboch prípadoch je možné k zadanej hodnote pripočítať korekčný signál z externého regulátora a simulovať tak napr. reguláciu napätia siete (v pilotnom uzle). V prípade, že prúd prekročí menovitú hodnotu o 10% je jeho hodnota regulovaná dodávkou Q na menovitú hodnotu (dodávka činného výkonu má prednosť pred reguláciou napätia). Pre T_{IO}<0 reguluje regulátor na konštantný účinník.

Výkon turbíny N_T je určený súčinom konštanty K (polovičný súčin hustoty vzduchu a plochy vrtule), účinnosťou turbíny c_P a treťou mocninou rýchlosti vetra. Účinnosť turbíny závisí na činiteli rýchlobežnosti λ a uhla natočenia β podľa vzťahu prevzatého z [12].

ISSN 1337-6756

Obr. 2 Bloková schéma modelu DFIG vrátane modelu veternej turbíny WIND.

IV. MODEL DFIG V PROGRAME EUROSTAG

Model VtE v programe EUROSTAG [13] pozostáva z modelu DFIG modelovanom indukčným strojom s rotorom pripojeným k napäťovému zdroju (typ M15) a injektoru (IR,II) a z tzv. makroblokov WINDTURB, REGDFIG, RECONNE a INTERRO.

Model DFIG v programe EUROSTAG je znázornený na Obr. 4. Štruktúra a prepojenia medzi jednotlivými tzv. makroblokmi modelovanými v programe EUROSTAG sú zobrazené na Obr. 3.

Makroblok WINDTURB počíta mechanický moment (CM) a optimálnu referenčnú rychlosť rotora (NREF) na základe užívateľom zadanej rýchlosti vetra (@VENT) a aktuálnej rýchlosti rotora (OMEGA). Hodnota NREF vstupuje do makrobloku REGDFIG.

Makroblok REGDFIG počíta napätia rotora (U2R a U2I) na reguláciu rotorových prúdov a činný výkon rotora (P2) na základe referenčnej rýchlosti rotora NREF a aktuálnej rýchlosti rotora.

Obr. 4 Modelovanie DFIG v programe EUROSTAG [13]

Makroblok RECONNE riadi prevádzku generátora počas doby odpojenia statora. V prípade poklesu napätia spôsobenom napr. skratom je statorová ochrana schopná okamžite odpojiť stator od siete a v prípade vrátenia funkcií do normálu ho znovu pripojit.

Makroblok INTERRO reguluje injektor (WT_GSC) a modeluje sieťovú stranu frekvenčného meniča. Vstupom do makrobloku je hodnota činného výkonu generovaná rotorom (P2) a výstupom je prúd injektovaný do siete.

Obr. 5 Prepojenia medzi makroblokmi modelu v programe EUROSTAG [13]

V. SIMULAČNÉ VÝPOČTY

V oboch programoch bol simulovaný nasledujúci scenár:

TABUĽKA 7

Scenár udalostí simulovaného výpočtu

UDALOSŤ	ČAS [s]	
	Začiatok	Koniec
Štart dynamickej simulácie.	0	
Konštantná rýchlosť vetra 7 m/s pre WT_STAT1.	0.	10.
Konštantná rýchlosť vetra 7 m/s pre WT_STAT2.	0.	15.
Zníženie rýchlosti vetra na 0 m/s pre WT_STAT1.	10	40
Zníženie rýchlosti vetra na 0 m/s pre WT_STAT2.	15	45
Zvýšenie rýchlosti vetra na 22 m/s pre WT_STAT1.	50	160
Zvýšenie rýchlosti vetra na 22 m/s pre WT_STAT2.	55	165
Konštantná rýchlosť vetra 22 m/s pre WT_STAT1.	160	175
Konštantná rýchlosť vetra 22 m/s pre WT_STAT2.	165	180
Veterný park WT_STAT1 odpojený od siete.	16	5
Veterný park WT_STAT2 odpojený od siete.	17	0
Zníženie rýchlosti vetra na 7 m/s pre WT_STAT1.	175	193
Zníženie rýchlosti vetra na 7 m/s pre WT_STAT2.	180	198
Konštantná rýchlosť vetra 7 m/s pre WT_STAT1.	193	280
Konštantná rýchlosť vetra 7 m/s pre WT_STAT2.	198	280
Pripojenie a postupný štart veterného parku.	200	206

Pripojenie a postupný štart veterného parku.	201	207
Rozpojenie vedenia NHV1-NHV2-2.	220)
Zvýšenie záťaže v uzle NHV3.	250)
Koniec dynamickej simulácie. 280)

Nasledujúce obrázky porovnávajú časové priebehy prechodných dejov získané simulačnými výpočtami v programoch EUROSTAG (obrázok hore) a MODES (obrázok dole).

Na Obr. 5 je priebeh rýchlosti vetra, ktorý predstavuje rozruch v sústave. Podľa zmeny vetru sa mení výkon dodávaný oboma elektrárňami do siete. Výkon VtE závisí na rýchlosti vetra, ako ukazujú priebehy činných výkonov generátorov na Obr. 6. Po poklese rýchlosti vetra klesá tiež dodávka výkonu a po opätovnom náraste rýchlosti na hodnotu okolo 15 m/s dávajú turbíny maximálny výkon 20 MW.

Tento výkon je v programe MODES udržiavaný pomocou natáčania lopatiek turbíny (v blokovej schéme modelu na Obr. 2 je uhol natočenia lopatiek označený β , na Obr. 7 je časový priebeh natočenia lopatiek označený ako BETA). Po vypnutí generátora sa lopatky turbíny natočia na maximálnu hodnotu, aby sa vyregulovala rýchlosť otáčania na zadanú hodnotu (na Obr. 2 je zadaná hodnota regulácie otáčok označená ω_Z , na Obr. 7 je časový priebeh označený ako WZAD). Po zapnutí generátora sa otáčky vyregulujú na optimálnu hodnotu, pri ktorej má turbína pre danú rýchlosť vetra najlepšiu účinnosť.

Pri zmenách výkonu VtE a zmenách zaťaženia ostrova (jedná sa o ostrovnú prevádzku, keď paralelne spolupracuje jedna parná turbína a dve veterné bez pripojenia k nadradenej sústave) dochádza k zmene frekvencie ostrova) ako ukazujú obrázky 8 (v programe MODES je zobrazovaná priamo odchýlka frekvencie od menovitej hodnoty SU).

Obr. 5 Časový priebeh rýchlosti vetra v m/s

Obr. 7 Časový priebeh uhla natočenia lopatiek a zadaných otáčok v programe MODES

Obr. 8 Časový priebeh frekvencie ostrova

V programe MODES je parná turbína modelovaná jednoduchým modelom podľa nasledujúceho obrázku:

Obr. 9 Bloková schéma modelu parnej turbíny vrátane parametrov

Otváranie ventilov je regulované proporcionálne podľa odchýlky otáčok generátora od menovitej hodnoty (sklzu s_G) so zosilením 20, čo zodpovedá statike 5%.

V programe EUROSTAG je turbína modelovaná nasledovne [13]:

s	INTMAX	KDELTAF	THR	PROPHP
	(-)	(-)	(s)	(-)
Laplaceov operátor	1,1	25	10	0.3

Mechanický točivý moment turbíny je v p.u. k menovitému výkonu turbíny.

Obr. 10 Bloková schéma modelu turbíny vrátane parametrov

VI. ZÁVER

V rámci EÚ je plánovaný výrazný nárast inštalovaného výkonu veterných elektrární. Na tento stav nie je ES, budovaná na báze centrálnych zdrojov, prispôsobená. Z tohto dôvodu je potrebné vyšetrovať vplyv veterných elektrární na ES ešte pred ich pripojením do siete. [16, 17]

Na základe dosiahnutých výsledkov možno konštatovať, že simulačné prostriedky MODES a EUROSTAG sú vhodnými nástrojmi na modelovanie prevádzky veterných elektrární a ich spolupráce s elektrizačnou sústavou.

POĎAKOVANIE

Táto práca bola podporovaná Agentúrou na podporu výskumu a vývoja prostredníctvom finančnej podpory č. APVT-20-026902 a Vedeckou grantovou agentúrou Ministerstva školstva SR a Slovenskej akadémie vied prostredníctvom finančnej podpory VEGA č. 1/4075/07.

27-82-1

LITERATÚRA

- K.Máslo: Modelování větrných elektráren pro výpočty dynamické stability, sborník 7. semináře E2004, Praha září 2004
- [2] K.Máslo: Vliv větných elektráren na provoz ES, sborník konference CIRED, Tábor listopad 2004
- [3] V.Mach, K. Máslo: Model asynchronního generátoru, 7. mezinárodní konference Automatizace energetických procesů, Zlín květen 2006
- [4] V.Mach, K. Máslo. Verifikace modelu asynchronního stroje v programech ATP a MODES měřením Sborník konference ELEN 2006 pořádané ČVUT, Praha září 2006
- [5] K. Máslo, A. Kasembe: Požadavky Kodexu PS na větrné elektrárny z hlediska dynamické stability, sborník konference ELEN 2008 pořádané ČVUT, Praha září 2008
- [6] K. Máslo, A. Kasembe: Wind Farm Equivalent for Transient Stability Calculations, sborník konference ELEN 2008 pořádané ČVUT, Praha září 2008
- [7] K. Máslo, A. Kasembe: Požadavky na větrné elektrárny z hlediska dynamické stability, sborník konference CIRED, Tábor listopad 2008
- [8] J. Rusnák, M. Hvizdoš, J.Tkáč: Modelling of DFIG-based wind power plants operation, 10.mezinárodní konference Electric Power Engineering, Dlouhé Stráně květen 2009
- [9] Kodex PS –část.I Plánování rozvoje PS, dostupný na http://www.ceps.cz
- [10] K.Procházka. Zvláštní požadavky na farmy VtE připojované do sítí 110 kV, sborník konference CIRED, Tábor listopad 2008
- [11] UCTE Operational Handbook Policy 3: Operational Security http://www.ucte.org/_library/ohb/Policy3_v13.pdf
- [12] Slootweg J.G., Polinder H., Kling W.L., "Reduced Order Models of Actual Wind TurbineConcepts", IEEE Young Researchers Symposium, Leuven, February, 2002
- [13] Tractebel and Electricité de France: Eurostag Documentation, Release 4.3.
- [14] Tractebel and Electricité de France: Eurostag Tutorial, October 2002.
- [15] Mešter, M., Chladný, V.: Analýza elektrizačnej sústavy pomocou programu Eurostag In: EE - Odborný časopis pre elektrotechniku a energetiku, roč. 11, mimoriadne číslo, október 2005. Bratislava: Spolok absolventov a priateľov FEI STU (EF SVŠT) v Bratislave, 2005, s. 92-94. ISSN 1335-2547
- [16] Mešter, M.: Realita obnoviteľných zdrojov energie. In: EE časopis : Odborný časopis pre elektrotechniku a energetiku. roč. 9, č. 6 (2003), s. 13-15. ISSN 1335-2547.
- [17] Hvizdoš, M., Tkáč, J.: Pripojovanie decentralizovaných zdrojov elektriny do distribučnej siete. In: EE časopis : Časopis pre elektrotechniku a energetiku. roč. 14, mimoriadne č., október (2008), s. 81-85. ISSN 1335-2547.

ADRESY AUTOROV

Ing. Jozef Rusnák, PhD. jozef.rusnak@tuke.sk

FEI TUKE, Katedra elektroenergetiky, Mäsiarska 74, 041 20 Košice, Slovenská republika Ing. Karel Máslo, CSc, <u>maslo@ceps.cz</u>

- Ing. Petr Trubač, <u>trubac@ceps.cz</u>
- ČEPS, a.s., Elektrárenská 774/2, 101 52 Praha, Česká Republika,